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Abstract

Schizophrenia spectrum disorders (SSDs) are associated with significant functional impair-

ments, disability, and low rates of personal recovery, along with tremendous economic

costs linked primarily to lost productivity and premature mortality. Efforts to delineate the

contributors to disability in SSDs have highlighted prominent roles for a diverse range of

symptoms, physical health conditions, substance use disorders, neurobiological changes,

and social factors. These findings have provided valuable advances in knowledge and

helped define broad patterns of illness and outcomes across SSDs. Unsurprisingly, there

have also been conflicting findings for many of these determinants that reflect the heteroge-

neous population of individuals with SSDs and the challenges of conceptualizing and treat-

ing SSDs as a unitary categorical construct. Presently it is not possible to identify the

functional course on an individual level that would enable a personalized approach to treat-

ment to alter the individual’s functional trajectory and mitigate the ensuing disability they

would otherwise experience. To address this ongoing challenge, this study aims to conduct

a longitudinal multimodal investigation of a large cohort of individuals with SSDs in order to

establish discrete trajectories of personal recovery, disability, and community functioning,

as well as the antecedents and predictors of these trajectories. This investigation will also

provide the foundation for the co-design and testing of personalized interventions that alter

these functional trajectories and improve outcomes for people with SSDs.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0288354 September 21, 2023 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Agarwal SM, Dissanayake J, Agid O,

Bowie C, Brierley N, Chintoh A, et al. (2023)

Characterization and prediction of individual

functional outcome trajectories in schizophrenia

spectrum disorders (PREDICTS study): Study

protocol. PLoS ONE 18(9): e0288354. https://doi.

org/10.1371/journal.pone.0288354

Editor: Thiago P. Fernandes, Federal University of

Paraiba, BRAZIL

Received: February 22, 2023

Accepted: June 23, 2023

Published: September 21, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0288354

Copyright: © 2023 Agarwal et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: N/A/ -protocol

reports no results.

https://orcid.org/0000-0002-2705-5146
https://orcid.org/0000-0001-8055-860X
https://orcid.org/0000-0002-2435-786X
https://orcid.org/0000-0003-1389-1351
https://orcid.org/0000-0001-5401-2996
https://orcid.org/0000-0002-2897-2122
https://orcid.org/0000-0001-6220-519X
https://doi.org/10.1371/journal.pone.0288354
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288354&domain=pdf&date_stamp=2023-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288354&domain=pdf&date_stamp=2023-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288354&domain=pdf&date_stamp=2023-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288354&domain=pdf&date_stamp=2023-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288354&domain=pdf&date_stamp=2023-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0288354&domain=pdf&date_stamp=2023-09-21
https://doi.org/10.1371/journal.pone.0288354
https://doi.org/10.1371/journal.pone.0288354
https://doi.org/10.1371/journal.pone.0288354
http://creativecommons.org/licenses/by/4.0/


1. Introduction

1.1. Functional disability and recovery in schizophrenia spectrum disorders

Schizophrenia spectrum disorders (SSDs) including schizophrenia, schizoaffective disorder,

and other primary psychotic disorders are serious and persistent mental illnesses characterized

by a combination of positive symptoms (i.e., delusions and hallucinations), cognitive

impairment (including deficits in attention, working memory, and executive function), and

negative symptoms (i.e., diminished emotional expression and motivation deficits [1]. Esti-

mates suggest that the lifetime prevalence of SSDs in the population is up to 2% [2]. Despite

some advances in treatment of SSDs, enduring impairments in community functioning con-

tinue to be a hallmark of the disorder with a median recovery rate of 13.5% [3–5]. Therefore,

SSDs remain a leading cause of disability worldwide [6, 7] and are associated with tremendous

economic and personal costs. These include lower rates of employment [8, 9], educational

achievement [10], and social and romantic relationships [11], contributing to lost productivity

[8, 12, 13]. This burden also enormously impacts the wellbeing of family members and caregiv-

ers [14].

In addition to disability quantified by objective measures, individuals with SSDs also expe-

rience subjective impairments in quality of life, physical health, mood, leisure activities, and

social relationships [15, 16], although substantial inter-individual variability exists [17–20].

However, previous longitudinal studies of functional outcomes in SSD have not focused on

the critically important domain of subjective recovery [21–24]. Person-centered or personal

recovery can be conceptualized as a set of processes and/or outcomes that support a personally

meaningful life in the context of having a mental illness [25]. This incorporates key personal

factors including connectedness, hope, identity, meaning, and empowerment [26]. Although

stakeholders have increasingly embraced this conceptualization of personal recovery [27],

there has been limited research on longitudinal trajectories of recovery [28] and there are gaps

in the literature regarding concepts such as community function and disability related to per-

sonal recovery over time [29].

1.2. Predictors of functional disability and recovery

1.2.1. Psychopathology. Psychotic symptoms are tremendously disabling [6, 7] and

impair psychosocial functioning considerably. As predictors of functional disability, both posi-

tive and negative symptoms have been associated with lower likelihood of meeting criteria for

clinical recovery in later phases of illness [30–33]. Negative symptoms have generally demon-

strated greater association with psychosocial functioning in SSD compared to positive symp-

toms [34–41] and predict functional impairment through the course of the illness [39–48],

regardless of whether negative symptoms are broadly defined or explicitly restricted to primary

negative symptoms [49, 50].

Cognitive deficits have also been identified as key determinants of functional outcomes

[51, 52], although the size of this effect remains uncertain [35, 42, 53, 54]. With regard to

domains of functioning, social cognition may be most closely associated with social function-

ing [55]. The theory of mind, social perception and knowledge have emerged as specific cogni-

tive domains that are strongly associated with psychosocial functioning [56, 57]. Meta-analytic

findings suggest that social cognition accounts for more unique variance in functioning than

neurocognition [56, 57]. In addition, the relationship between neurocognition and functioning

appears to be at least partially mediated by social cognition [58–64].

Beyond the traditional symptoms, depression, anxiety, and substance abuse have been asso-

ciated with longitudinal subjective quality of life along with other psychosocial measures
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including self-efficacy and social support perceived from significant others [20, 65]. While

understudied compared to objective measures of community functioning, recent studies have

indicated that negative emotions including depression, anxiety, negative self-esteem, and

hopelessness, as well as internal locus of control have emerged as central predictors of personal

recovery [66–68]. Similarly, substance use has been identified as a predictor of personal recov-

ery. Recent findings indicate that the misuse of substances, specifically alcohol and marijuana,

are often associated with poor outcomes regarding independent living and social compliance

[69, 70]. In addition, this disorder has been shown to be a primary cause of frequent emer-

gency department visits, red-admission into inpatient care, and incarceration [69, 70].

1.2.2. Genetic and biological predictors. Twin, family, and adoption studies support a

strong genetic component in the risk of developing SSDs, with heritability estimates in the

range of 80–87% [71, 72]. Among the SSDs, schizophrenia (SCZ) is a severe and most com-

monly studied disorder. A Hypothesis-free genome wide association study (GWAS) of SCZ

using over 76,755 patients and over 243,649 controls identified 342 independent single nucleo-

tide polymorphisms (SNPs) at 287 distinct genomic loci to be significantly associated with

SCZ. However, the clinical utility of each individual common variant in diagnosing SCZ is

very small. To this end, genome-wide polygenic risk scores (PRS), generated from thousands

of GWAS risk variants, has emerged as an important tool that may in the future identify indi-

viduals at significant risk for SCZ before the illness manifests. PRS analysis has emerged as an

important tool to potentially predict outcomes in mental health [73]. Recent work has corre-

lated PRS with Global Assessment of Functioning (GAF) scale scores pre-treatment [74], and

PRS explain a significant, albeit small, proportion of variance in quality of life in people with

SSDs above and beyond demographic and clinical variables [75]. There is also an emerging lit-

erature on brain imaging predictors of functional outcomes in patients with SSDs. Historically

enlarged lateral ventricles have been associated with poor functional outcomes [76], However,

more regional findings through longitudinal magnetic resonance imaging (MRI) have attrib-

uted poor functional outcomes to volumetric decreases in frontal lobe structures [77], specifi-

cally the inferior, middle, and superior frontal gyri [78].

1.2.3. Physical health. Physical health and metabolic comorbidities have also been identi-

fied as predictors of functional disability amongst individuals living with SSD. Individuals

with SSD have significantly higher rates of cardiometabolic diseases, including type 2 diabetes

(T2D), respiratory diseases, liver diseases, cancers, and lower physical fitness [79, 80], leading

to early mortality [79, 81, 82]. Despite this burden, access to metabolic monitoring, physical

health care, and interventions remain suboptimal relative to the general population [83, 84].

Concerningly, findings suggest that the mortality gap from CVD in SSDs may be increasing

over time relative to the general population [85, 86]. Beyond cardiovascular health, metabolic

comorbidity is also associated with poorer quality of life [87], stigma [88], barriers to social

engagement [89] and poorer adherence with treatment [90], all contributing to poorer mental

health outcomes. Furthermore, physical health and other metabolic factors could represent

modifiable risk factors for domains such as cognition that are classically recalcitrant to treat-

ment [91–93].

1.2.4. Social predictors. Socio-environmental exposures at both the individual and envi-

ronmental level have been established as risk factors in developing a SSD. In addition, the

extension of these known risk factors on functioning, disability and recovery is an area of

increasing interest. Some of the most compelling evidence for socio-environmental risk comes

from well-replicated findings of increased incidence of SSD in immigrant and minority ethnic

communities [94–97], in urban settings [98], and in the context of childhood trauma, discrimi-

nation [99], social isolation and loneliness [100], as well as employment and achievement-

expectation mismatch [101]. In particular, racialized people with a SSD have been found to
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experience worse clinical, social and service use outcomes in previous cohort studies [96]. In

contrast to these risk factors, psychological resilience [102] and social capital [103] have been

identified as potential protective factors that may buffer the impact of detrimental socio-envi-

ronmental exposures and support positive outcomes. Beyond the ongoing impact these risk

factors have on the course of SSD and outcomes, people with a SSD must also contend with

the impacts of stigma, social exclusion, challenges in accessing services and care, which may

further disparities [96].

1.3. Outcomes for individuals with SSDs are heterogeneous, with distinct

trajectories of functioning within population subsets

An examination of the heterogeneity of symptoms and functioning for individuals with SSD

has historically identified up to 8 different course trajectories varying in type of onset, course

type, and end state [104, 105]. More recently, studies have used data-driven modeling

approaches to examine longitudinal trajectories of functional outcomes in SSDs within the

first few years of illness, finding that those in higher social functioning trajectories were more

likely to be female, have higher cognitive functioning, less substance abuse history, and better

premorbid functioning in late adolescence [21, 106]. Long-term data-driven longitudinal stud-

ies have reported four outcome trajectories of social functioning and improvement in individ-

uals with SSD: 1) preserved, 2) moderately impaired, 3) severely impaired, and 4) profoundly

impaired functioning [24, 107]. In addition, initial comparisons of longitudinal functioning

amongst individuals with SSDs to those with mood disorders indicated a substantial and con-

sistent decline in functioning over time for people with SSDs [108].

Overall, while these studies provide a more nuanced understanding of the heterogeneous

longitudinal functional trajectories for individuals with SSDs, several gaps remain. In many

instances, outcome trajectories were based on biomedical frameworks rather than personal

recovery or self-reported disability. In addition, most studies used a limited set of sociodemo-

graphic and clinical variables, physical health examinations, and neurobiological markers.

Consequently, this may impact the ability to adequately establish long-term trajectories and

implement treatment interventions at the individual patient level [26, 109].

1.4. Summary and rationale

Despite many decades of research and efforts at treatment innovation, people with SSDs con-

tinue to experience significant impairments across important outcome domains, including

personal recovery, physical and mental health related disability, and community functioning.

To date, most attempts to characterize functional trajectories in SSDs have utilized popula-

tion-based approaches to identify a broad range of demographic, social, environmental, clini-

cal, physical health, and biological predictors of functional outcomes. However, findings

across studies suggest that such effects are not in fact uniform, but rather depend on the popu-

lation sampled and the underlying trajectories comprising the sampled population. Similar

challenges have emerged with regards to findings for treatment interventions. Most studies

have either focused on treating a specific domain of psychopathology to mediate improve-

ments in functioning, or broader health and psychosocial interventions that are delivered to

individuals based on their diagnosis of an SSD. Within a biomedical framework, recovery and

functional outcomes in SSDs typically focus on symptom management and indices of social

and role functioning [5, 110]. There is a scarcity of research evaluating the longitudinal trajec-

tories of personal recovery and disability in people with SSDs, and how these outcomes inter-

act with each other and with traditional measures of community functioning over time.
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In order to advance the understanding of outcome trajectories and potential treatment

intervention opportunities, there is a need for a broader and more comprehensive evaluation

of discrete trajectories of personal recovery, disability, and community functioning in individ-

uals with SSDs. To our knowledge, no longitudinal study has examined these concurrent tra-

jectories, nor incorporated the impact of physical health, neurobiology, and genetic predictors

on these trajectories. The proposed study will advance understanding of unique and shared

longitudinal courses, as well as underlying clinical, socio-environmental, physical health and

biological predictors. In addition, the inclusion of electronic medical record (EMR)-based ana-

lytics and administrative health data provides additional unique opportunities for expanded

clinical phenotyping and longitudinal outcome evaluations. The proposed study will also set

the stage for the co-design and testing of real-world interventions targeting discrete outcome

trajectory subtypes through a precision medicine approach. Findings from this research may

help improve outcome trajectories, promote recovery, and reduce the enduring disability of

individuals with SSD.

2. Objectives and hypotheses

Objective 1: Determine the longitudinal functional trajectories of individuals with SSDs across

three co-primary domains consisting of personal recovery, disability, and community

functioning.

Hypothesis 1a: Within each outcome domain, we anticipate approximately 4–5 longitudi-

nal trajectories, consisting of early-sustained improvement, delayed gradual improvement,

early improvement / delayed mild-moderate deterioration, early improvement / delayed mod-

erate-severe deterioration, and persistent disability.

Hypothesis 1b: We hypothesize that early improvement in personal recovery trajectories

will be antecedents of subsequent improvement in disability and community functioning tra-

jectories, while deteriorating or persistent disability, particularly with regards to physical dis-

ability, will be early antecedents of worse community functioning.

Objective 2: Develop and test predictive models to accurately determine functional trajec-

tories at the individual level.Hypothesis 2a

Trajectories of functioning will be differentiable based on sociodemographic and treatment

factors, psychopathology, physical health, and biological measures.

Hypothesis 2b: A subset of these differential baseline sociodemographic, symptoms, and

biological measures will enable the prediction of individual functional trajectories with high

positive predictive power.

Exploratory Objective: Develop and validate a novel automated method using natural lan-

guage processing (NLP) and machine learning (ML) for interrogating unstructured EMRs, to

ascertain retrospective temporal trajectories in symptom, physical health, treatment, and func-

tional outcomes.

Exploratory Hypotheses: NLP-ML-based characterization of temporal trends in functional

outcomes, symptoms, physical health, and treatment will be correlated with relevant struc-

tured clinical measures and differentiate the longitudinal outcome trajectory subtypes identi-

fied in the first objective. Thus, NLP-ML-based temporal trends in functioning will serve as

antecedent markers to inform the discovery of prospective outcome trajectories.

3. Methodology

This study will utilize a longitudinal sequential cohort design, with broad sampling across age

ranges and phases of illness for individuals with SSDs. The characterization and prediction of

trajectories of functional disability will provide the foundation for future integration of
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interventions targeting specific predictors of functional disability that will be co-designed with

patients, family members, and service providers, and evaluated as embedded trials within this

cohort study. Outcomes, measures, and assessments were selected to comprehensively capture

relevant domains of functional outcomes and recovery. This selection was informed by patient

and family member representatives of the study’s steering committee, as well as their integra-

tion within routine clinical services at CAMH and alignment with other local, national, and

international clinical research initiatives. Study assessments will be completed at baseline and

longitudinally, as outlined in Fig 1. Extended follow-up beyond the initial three years will be

pursued through external funding to support this work. Passive follow-up extending beyond

the clinical follow-up period will also be possible through linkage with health administrative

data.

3.1. Participants

The study will recruit 1000 participants across all outpatient and inpatient clinical services at

CAMH providing care for individuals with SSDs and related disorders. The Rationale for

choosing the given sample size is to provide more precise effect size estimates that can be

potentially utilized for clinically useful risk stratification. In addition, previous studies have

attempted to examine outcomes and functional trajectories in diverse samples of people with

SSD but have been limited by study quality and sample size [111].

3.1.1. Inclusion criteria. Participants will be eligible for this study if they: 1) are 16 years

of age and older; 2) have a DSM-5 diagnosis of any schizophrenia spectrum disorder (SSD) or

other disorders with psychotic features such as bipolar I disorder with psychotic features,

major depressive disorder with psychotic features, and substance/medication-induced psy-

chotic disorder; and 3) have adequate fluency in English to participate in clinical care without

Fig 1. Schedule of study assessments.

https://doi.org/10.1371/journal.pone.0288354.g001
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the need for a translator. Of note, participants will be eligible regardless of duration of illness,

co-morbid mental or physical health conditions, capacity to consent to treatment, or whether

they are receiving inpatient or outpatient services.

3.1.2. Exclusion criteria. For this study, there are no specific exclusion criteria. Therefore,

any individual that meets the inclusion criteria will be eligible to participate.

These broad eligibility criteria will serve to support generalizability of the sample. In addi-

tion, the inclusion of participants with other related psychiatric disorders aside from those

with SSD’s will maximize the opportunity to evaluate the influence of common co-occurring

illnesses, and enable an accelerated longitudinal design maximizing coverage of longitudinal

functional trajectories across illness stages.

3.1.3. Consent process. Participants will provide written informed consent. During the

consent process, we will use a structured framework to assess the capacity of participants to

consent to the study or whether a substitute decision maker (SDM) is needed. For individuals

deemed incapable to consent to treatment, their SDM will provide written informed consent

in conjunction with participant assent to study participation.

3.2. Procedures

Participants will undergo comprehensive clinical and functional characterization using a series

of standard measures, including structured diagnostic assessment, clinical assessments to

index severity of psychiatric symptoms, substance use, physical health, cognition and function-

ing, along with collection of treatment and medical history data from participants and their

EMR (Table 1). Demographic information will be collected through routine use of the CAMH

Health Equity Form [112] in addition to revised items from the PhenX Toolkit Demographic

Protocol [113] and further characterization of social and health equity factors. Linkage is

planned with broader provincial health administrative data held at ICES (formerly known as

the Institute for Clinical Evaluative Sciences. Participant assessments will be conducted either

in-person or virtually, where possible, based on participant preference. All participants will be

offered the opportunity to participate in the neuroimaging and laboratory/biological compo-

nents of this study.

3.3. Outcome measures

3.3.1. Primary measures. To evaluate the outcomes of disability, recovery, and commu-

nity functioning, three primary measures will be employed: 1) The 22 item version of the

Recovery Assessment Scale (RAS) [114]; 2) World Health Organization Disability Assessment
Schedule 2.0 (WHO-DAS) [115]; and 3) Personal and Social Performance scale (PSP) [116, 117].

Literature identifies the 22-item version of the RAS as one of the most widely used measures

of person-centered recovery. With well-established psychometric properties, this measure has

indicated good validity and reliability in 49 and 19 studies, respectively [114]. The WHO-DAS

is a 36-item measure of disability and health that is grounded in the framework of the WHO’s

International Classification of Functioning, Disability and Health [115]. Amongst different

populations, this measure enables a comprehensive evaluation of individuals’ functioning

across six major life domains (cognition, mobility, self-care, getting along, life activities, and par-

ticipation in society). In addition, literature indicates this measure to have good psychometric

qualities through good reliability, concurrent validity, a stable factor structure across populations,

and is sensitive to change over time [115]. For this study, we will employ both the participant self-

report version as a primary outcome measure, and, where available, will also seek input from the

informant-version of the WHO-DAS. To capture long-term trajectories of community function-

ing, we will be utilizing the PSP, an anchored version of the Social and Occupational Functioning
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Table 1. List of clinical assessments for secondary outcome measures.

Outcome Measures Clinical Assessments and Internal Reliability (Cronbach’s alpha)

Recovery and Quality of Life 1) Canadian Personal Recovery Outcome Measure (C-PROM) [118]

(Good Internal Validity) [118]

2) WHO Quality of Life Brief Version (WHOQOL-BREF) [119] (0.896)

[120]

Psychopathology (Clinical Measures) 1) Structured Clinical Interview for DSM-5 (SCID-5) [121] (N/A)

2) The 24-item Brief Psychiatric Rating Scale

(BPRS) [122] (0.87) [123]

3)Scale for the Assessment of Negative Symptoms (SANS) (Andreasen,

1982) [124] (0.885) [125]

4) Clinical Global Impression (CGI) scale [126] (N/A)

5) VAGUS insight into psychosis scale [127] (0.745) [127]

6) Drug Attitude Inventory (DAI) [128] (0.889) [129]

7) Columbia Suicide Severity Rating Scale (CSSRS) [130] (0.937) [131]

8) Modified Colorado Symptom Index (mCSI) [132] (0.90) [132]

Substance Use 1) Alcohol Use Disorders Identification Test—Consumption (AUDIT-C)

[133] (0.96) [134]

2), NIDA Quick Screen/Modified ASSIST tool [135] (N/A)

3) CAMH Tobacco Screening Tool (N/A)

Cognition 1) Brief Assessment of Cognition in Schizophrenia (BACS) [136] (Good

Internal Reliability) [136]

2) Penn Emotion Recognition task (ER-40) (Kohler et al., 2000) [137]

(0.808) [138]

3) The Awareness of Social Inference Test—Short (TASIT-S) [139] (Good

Internal Reliability) [139].

Treatment History and Medication

Side Effects

1) PhenX Toolkit medication inventory (N/A)

2) Abnormal Involuntary Movement Scale (AIMS) [140] (Good Internal

Reliability) [141]

3) Simpson Angus Rating Scale (SARS) [142] (0.79) [143]

4) Barnes Akathisia Rating Scale (BARS) [144] (Good Internal Reliability)

[144]

5) Subjective Well-being under Neuroleptics (SWN) scale [145] (0.93)

[146]

6) UKU Side Effect Rating Scale–Self Report [147] (Good Internal

Reliability) [147]

Physical Health 1) Personal/Family History of cardiovascular disease (CVD), Lifestyle

review (diet, activity, smoking) (N/A)

2) Weight and waist circumference. BMI is calculated (weight/height 2)

(N/A)

3) Heart rate and blood pressure (N/A)

4) Simple Physical Activity Questionnaire (SIMPAQ) [148] (Good

Internal Reliability) [148]

5) Obesity Adjustment Survey-Short Form (OAS-SF) [149] (0.719) [149]

6) WHO Quality of Life Brief Version (WHOQOL-BREF) [119] (0.896)

[120]

Social, Environmental, and Health

System Measures

1)Vancouver Index of Acculturation–Short (VIA) [150] (0.87) [150]

2) Multi-Group Ethnic Identity-Revised (MIEM-R) [151] (0.88) [151]

3) 8 item PhenX Acculturation Survey [113] (N/A)

4) Everyday Discrimination Scale (EDS) [152] (0.80) [153]

5) The Internalized Stigma of Mental Illness (ISMI) [154] (0.94) [155]

6) Life Events Checklist (LEC) [156] (Good Internal Validity) [156]

7) Childhood Trauma Questionnaire–Short Form (CTQ-SF) [157] (0.97)

[157]

8) Connor-Davidson Resilience Scale [158] (0.89) [158]

9) Self-Esteem Rating Scale-Short Form (SERS-SF) [159] (0.90) [159]

10) Multidimensional Scale of Perceived Social Support (MSPSS) [160]

(0.95) [161]

11) Adapted Social Capital Assessment Tool (A-SCAT) [162] (0.95) [163]

12) Vocational Time-Line Follow-Back (VTLFB) [164] (N/A)

13) Residential Timeline Follow-Back (RTLFB) [165] (0.88 for 6 months)

[166]

14) Health, Social and Justice Service Use Inventory (HSJSU) [167] (N/A)

https://doi.org/10.1371/journal.pone.0288354.t001
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Assessment Scale (SOFAS) from the DSM-IV. This measure allows for separate evaluations across

community functioning domains for individuals with SSDs. Such domains include: role function-

ing, social functioning, self-care, and disturbing and aggressive behavior [116]. In addition to its

diverse evaluation of community functioning, the PSP has indicated good test-retest and inter-

rater reliability, validity, and sensitivity to change over time [116, 117].

3.3.2. Secondary measures. 3.3.2.1. Clinical assessments. In addition to the primary mea-

sures, a broad assessment approach will be utilized to evaluate the complementary constructs

of personal recovery, disability and community functioning. This study will utilize a combina-

tion of both participant self-report and rater-administrated clinical assessments. These assess-

ments will be employed to evaluate the following outcome measures: recovery and quality of

life; psychopathology; substance use; cognition; treatment history and medication side effects;

physical health; and social, environmental, and health system measures. A full list of the clini-

cal assessments with reliability scores that will be used is listed in Table 1.

3.3.2.2. Blood-based measures. Fasting blood work will be collected at baseline to measure

glucose, insulin, HbA1c, CRP, lipid profile, and liver, kidney, and thyroid function.

HOMA-IR, an index of insulin resistance will be calculated from fasting glucose and insulin

levels. These assessments will be repeated yearly unless abnormal. Fasting glucose, insulin,

HbA1c, and lipids will be repeated at 3 months, if values are abnormal, if starting or switching

a new antipsychotic medication, and/or initiating adjunctive pharmacological intervention to

target metabolic comorbidity. In addition to the above laboratory assessments related to physi-

cal health, study participants will be offered the opportunity to provide samples for future

genomic and metabolomic analyses.

For participants interested in participating in our genomic research arm, genomic DNA

will be purified from blood or saliva samples and genotyped on Global Diversity Arrays (Illu-

mina). Calculations of the PRS score will follow the current best practices [168] using the

GWAS summary statistics (e.g. [169] for SCZ from patients of European, mixed-ancestry

meta-analyses and other ancestries. A recent comparison of PRS methods suggests that meth-

ods such as MegaPRS, LDPred2 and SBayesR gave the highest prediction statistics compared

to the conventional p-value based clumping and thresholding method (e.g. PRSice) in individ-

uals with psychiatric disorders [170]. We will explore the use of methods such as PRSice2

[171], PRS-CS [172], LDpred2 [173], SBayesR [174], and multi-PRS [175].

3.3.2.3. Neuroimaging measures. Magnetic resonance imaging (MRI) will be conducted at

baseline on a 3 Tesla GE Discovery 750 scanner. Standardized multi-band imaging sequences

as used in the Adolescent Brain Cognitive Development (ABCD) cohort study will be used to

acquire T1-weighted, multi-shell diffusion MRI, and resting state fMRI (R-fMRI) data; key

acquisition parameters have been published previously [176]. Given the importance of visceral

fat and its impact on cardiovascular health, an abdominal T1-weighted image and an image to

allow for water-triglyceride fat separation (IDEAL-IQ) will be acquired using the following

parameters: repetition time/time to echo (TR/TE) = 5.768 ms/2.64 ms, slice thickness = 10

mm, Spacing between slices = 10, Echo train length = 3, Acquisition matrix = 160, Reconstruc-

tion matrix = 256, Pixel bandwidth = 868.047, field of view (FOV) = 44, flip angle = 3˚, number

of excitation (NEX) = 0.5 [177–180].

3.3.2.4. Health administrative data. All participants in the study will have the opportunity to

consent to have their data linked with provincial single-payer administrative health data. This

linkage will enable access to additional contextual data that can help further identify trajecto-

ries outside the context of CAMH. The proposed linkage will allow for: 1) the evaluation of

real world outcomes and service use, and 2) a comparison to other people with SSDs who may

be receiving similar services in the community or have a SSD but are not connected with ser-

vices. All linked data will be de-identified and held and analyzed at ICES. ICES is a prescribed
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entity under section 45 Ontario’s Personal Health Information Privacy Act. Linkages will

occur across the following ICES data holdings: the Registered Persons Database (RPDB) which

is a central population registry that contains basic demographic data on all people insured by

OHIP; the Ontario Mental Health Reporting System (OMHRS) which contains data on all

inpatient hospitalizations to adult mental health beds; the Canadian Institute for Health Infor-

mation Discharge Abstract Database (CIHI-DAD) containing data on all acute care hospitali-

zation and mental health hospitalizations before 2005; the National Ambulatory Care

Reporting System (NACRS) which contains data on emergency department visits; outpatient

physician billings from OHIP; the Ontario Drug Benefit (ODB) claims which contains data on

medications dispensed through publicly funded program for eligible people; the Ontario Labo-

ratories Information System (OLIS) containing laboratory data across the province, the

Ontario Registrar General (ORG) for information on deaths; and the Ontario Marginalization

Index (ON-Marg) which is an area-level deprivation index based on census data. Propensity

scores will be calculated based on demographic and clinical covariates to enable the compari-

son between individuals receiving CAMH services, receiving community services, and those

that are eligible but not utilizing services.

3.3.2.5. EMR-based NLP andML for the characterization of longitudinal clinical course and out-
comes. EMR data can be used to track the evolution of symptoms and treatments [181] and evalu-

ate the impact of interventions on health outcomes [182]. Recent advances in natural language

processing (NLP) also make it possible to analyze unstructured clinical data (i.e., consultation,

progress, admission, and discharge notes), which can be combined with predictive modeling

identify deteriorating trajectories of mental and physical health, physical functional status, as well

as family, social, and spiritual supports, from structured and unstructured EMRs [183].

To retrospectively characterize the longitudinal clinical course and outcomes for study par-

ticipants, our EMR analysis will be carried out in two stages. In the first stage, we will develop

and evaluate an NLP methodology for analyzing clinical notes pertaining to patients with

SSDs. To identify relevant topics or themes within the clinical notes, we will train topic models

with Latent Dirichlet Allocation (LDA) [184]. LDA is an unsupervised ML algorithm which

identifies the presence of topics in textual data based on the co-occurrences of words or

phrases. The quality of emerging topics relies on the strategies used to preprocess text. How-

ever, research suggests that no one configuration of preprocessing rules is optimal across data-

sets and model types [185–187]. Therefore, we will explore various approaches to

preprocessing the clinical notes, focusing on different ways to select the terms used to train the

topic models (e.g., based on term frequency, term frequency-inverse document frequency

weights, and named entity recognition). We will also train topic models on different clinical

note types and sections, based on evidence that predicting clinical outcomes from medical

notes may be improved when more relevant note types or parts are used [188]. To evaluate

these approaches, we will examine associations between emerging topics and the available

structured data (i.e., as a form of external validation), as well as perform human-in-the loop

evaluations of topic coherence [189]. Our baseline model will be a topic model trained with

LDA on all notes and all available terms, assuming symmetric Dirichlet prior distributions and

using 2500 iterations of Gibbs sampling to learn 60 topics from each document. To examine

how topic number (k) impacts the quality of modelling, we will evaluate a range of 25–75 top-

ics. In all topic models, alpha (i.e., the Dirichlet prior over topic proportions per document)

will be set to 50/k, and beta (i.e., the symmetric prior over word distributions per topic) will be

set to 200/the length of the vocabulary (N).

In the second stage, we will extract structured and unstructured EMRs of study participants.

Structured data elements that overlap with measures utilized for prospective cohort characteri-

zation (described above) will include socio-demographic data, administrative data, clinical
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data, and measures of functioning. To characterize clinical course and outcomes for study par-

ticipants, we will train topic models on any available clinical records for these participants,

using the best performing text preprocessing and modeling approaches from our evaluations

of retrospective patient data in the first stage. Further evaluations of topic models at this stage

may involve qualitative comparisons of emerging topics with clinical notes of study partici-

pants. Additionally, we will explore the value of deriving embeddings of clinical notes with

large language models (e.g., ClinicalBERT; [190]), for predicting trajectory subtype member-

ship (as described in Section 3.4). We will evaluate performance based on different layers (with

the second to last layer as our baseline), as well as different aggregation methods (with concate-

nation used as a baseline method when aggregating from layers to tokens, and mean as a base-

line method when aggregating from tokens to texts).

3.4. Data analysis

Descriptive statistics including point estimates and confidence intervals will be generated to

summarize the data on all participants to understand the uni- and multi-dimensional charac-

teristics of their distribution. Clustering of observations at multiple levels will be evaluated to

provide guidance for selecting bias correction methods and multilevel modeling approaches.

Full information maximum likelihood estimation [191] and multiple imputation methods

[192] will be utilized when appropriate. As is typical in longitudinal research, we anticipate

non-random missing data. Sensitivity analyses will be conducted to evaluate the impact of

non-random missing data.

For Objective 1, latent growth mixture modeling [193] will be primarily applied to permit a

person-centered approach for identification of homogeneous subgroups of individuals with

distinct longitudinal outcome trajectories across our three co-primary outcome measures

respectively. Fit indices (e.g. AIC and BIC), Lo-Mendell-Rubin likelihood ratio test, theoretical

considerations, and clinical relevance will guide the decision of the optimum number of classes

to represent the growth trajectories of personal recovery, disability, and community function-

ing. Given the expected heterogeneity of our sample particularly on age range and illness

stages, it is important to assess measurement invariance and utilize methods (e.g, moderated

nonlinear factor models) [194] that accommodate time-varying constructs over subsamples.

Further, we will adopt two multivariate longitudinal approaches, cross-lagged panel [195]

and parallel processes [196] models, to model the longitudinal outcome measures simulta-

neously. The former is a more theory-based approach that can test directional effects that one

variable has on another at different points in time; for example, earlier measures of functioning

may predict later measures of disability. The latter could be used to associate multiple longitu-

dinal trajectories with respect to their growth characteristics; for example, the slopes of growth

trajectories of different outcomes may be associated with each other. In conjunction with

growth mixture modeling under the accelerated longitudinal design, these methods could pro-

vide a more comprehensive view of the outcome measures of interest.

For Objective 2, we will associate the membership of the subgroups and thus the character-

istics of these trajectories with sociodemographic and treatment factors, psychopathology,

physical health, and biological measures at baseline by treating probabilistic membership as

the dependent variable in the predictive models. Using structural equation modeling, we will

combine the latent growth mixture model that determines the membership of the subgroups,

measurement model that reduces the dimension of the predictors, and predictive model that

links them into one step using simultaneous equations.

For our exploratory objective, we will investigate associations between temporal patterns

emerging from topic modeling of unstructured EMRs, as well as embedding derived with large
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language models with relevant measures collected prospectively from study participants. We

will also use general linear model analyses as appropriate to investigate differential characteris-

tics between longitudinal outcome trajectory subtypes. These temporal patterns and embed-

dings will also be examined as potential predictors for trajectory subtype membership in line

with the methods employed for Objective 2.

We will conduct additional analyses to investigate the effect of sex and gender based on

data captured through the PhenX toolkit demographics measure. For Objective 1, we will

determine the longitudinal functional trajectories within sex and gender groups across three

domains and examine if there are substantial differences between sex and gender groups and if

necessary, test Hypotheses 1a and 1b within sex and gender groups as a supplement analysis.

For Objective 2, in addition to examining sex and gender as a main effect in predicting func-

tional trajectories at the person level, we will further assess if it interacts with other sociodemo-

graphic, treatment factors, psychopathology, physical health, and biological measures in the

predictive models.

3.4.1. MRI data analysis. 3.4.1.1. Structural and resting state functional MRI analysis.
These scans will be preprocessed together using the CAMH-developed and publicly released

Ciftify pipeline [197]. This pipeline incorporates workflows from FreeSurfer [198] for struc-

tural preprocessing and analysis and fMRIPrep for functional preprocessing [199].

3.4.1.2. Diffusion MRI analysis. After preprocessing (including eddy current correction,

nonlinear EPI distortion correction filtering, and tensor estimation), we will calculate diffusion

measures including fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffu-

sivity to investigate white matter integrity and connectivity. Researchers at CAMH have

recently shown multi-shell diffusion combined with novel non-tensor models can reliably gen-

erate measures of free water, diffusion kurtosis, the orientation dispersion index (ODI), and

neuritic density index (NDI) in gray matter [200]. Moreover, ODI has been associated with

cognitive performance in aging and changes in NDI in psychiatric disorders [201]. These mea-

sures will be combined with measures from the structural pipeline to drive multi-modal pro-

files of “brain-age” trajectories.

3.4.1.3. Extracting fMRI features with high reliability. All BOLD fMRI will be concatenated

together to increase the reliability of the BOLD connectivity signals [202]. Under this frame-

work, we anticipate that we may see r > 0.4 for> 50% of individual edges [202].

3.4.1.4. Abdominal imaging. In house scripts will be used to obtain liver fat percentage.

Selective thresholding along with automated and supervised contouring will be utilized to esti-

mate subcutaneous (SAT) and visceral fat (VAT). SAT and VAT for each participant will be

measured by segmenting the appropriate fat pixels on each of the acquired slices and then

measuring the total volume of the segmented pixels in mL.

3.4.2. Statistical power and sample size. We have assessed statistical power for the fol-

lowing targeted analyses aimed to a) identify distinct longitudinal functional trajectories of

individuals with SSDs; b) establish predictive models to associate personal factors with growth

trajectories; and c) provide feasibility indices for future interventions. Assuming that we will

have approximately four distinct longitudinal trajectories, through a Monte-Carlo study, we

concluded that we have sufficient power (0.80) to correctly enumerate the classes when they

are evenly distributed and reasonable power (0.68) when they are not. In the latter, we

assumed that the smallest class only takes up 15% of the total sample. Further, we concluded

that we have abundant power (0.91) to detect linear trends of small change over time (effect

size of 0.20 between two consecutive waves) even for the smallest class (n = 112). To identify

associations between predictors (e.g., social determinants) and group membership of the dif-

ferent trajectories, we also anticipate to have sufficient power (0.82 to 0.85) for detecting a

small odds ratio (OR = 1.68) depending on the distribution of the predictors. In addition, this

PLOS ONE Predicting individual trajectories of patients with schizophrenia spectrum disorders

PLOS ONE | https://doi.org/10.1371/journal.pone.0288354 September 21, 2023 12 / 25

https://doi.org/10.1371/journal.pone.0288354


study will provide reliable estimates for feasibility indices for future interventions. For all

aforementioned power estimation, we assumed 25% overall attrition and used .05 as the signif-

icance level.

4. Data management protocols

Data will be collected on REDCap forms (electronic database) and housed at CAMH. Labkey

will be used to support tracking and management of biological samples and genetic analysis

data. All data will be linked via each participant’s unique study ID. Data collection will take

place either in-person or virtually through the use of the Cisco Webex videoconferencing plat-

form. All MRI data will be uploaded to XNAT and automated pipelines used for standardized

processing and QA/QC procedures. A protocol data collection schedule will be used to moni-

tor participant progress, missing assessments, and other protocol deviations during the study.

Data entry screens will incorporate range checks or lists of valid responses for each item to

ensure accurate data entry. Forms with missing or invalid data in key identifying fields will be

referred back to raters for correction before entry. Other missing or invalid data will not pre-

vent the form from being entered, but will be flagged for correction. Queries will be built

around data entry and reports to review adverse events. Participant confidentiality will be

maintained by restricting study data access to specified study personnel. At the conclusion of

the study, all study data will be archived and retained for the full period required by regulations

and according to CAMH SOPs.

For retrospective patient data obtained from health records, all structured and unstructured

EMRs will be extracted, processed, and analyzed in accordance with established protocols and

safeguards. These protocols were co-developed with CAMH’s Research Ethics Board and Pri-

vacy Department to protect patient privacy. In brief, they involve hospital data warehouse staff

de-identifying unstructured EMRs and extracting numerical features from the text data before

it is shared with the study team. Because clinical records can contain highly contextualized per-

sonal and identifiable information, these protocols ensure that the sensitive data (in its raw

form) never leaves dedicated hospital clinical servers and is never accessed directly by the

study team. EMRs in the second stage will be accessed and analyzed with consent from study

participants.

4.1. Open science and data sharing

The PREDICTS Study will implement principles of open science by utilizing processes and

data governance being established by the CAMH BrainHealth Databank to enable and pro-

mote data sharing and reuse with researchers at CAMH and around the world. This includes

implementation of study data management processes to ensure that study data adhere to the

FAIR data principles–Findable, Accessible, Interoperable, and Reusable, as well as the collec-

tion of common data elements to facilitate data standardization and harmonization as appro-

priate. To support data sharing, a PREDICTS cohort explorer dashboard will be created to

allow users to explore available data and formulate data access requests. All information

entered into these databases will be free of identifying information. Data access to researchers

conducting secondary studies will be granted once appropriate approval has been obtained, as

defined in the BrainHealth Databank Data Access Policy.

5. Summary

Despite advances in understanding and treating SSDs, enduring disability continues to be the

hallmark of these serious and persistent mental illnesses. The proposed work aims to advance

the early identification and prediction of individual-level functional and recovery trajectories
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for people experiencing SSDs and explore the core contributors to these trajectories. Findings

from this study may set the stage for the development of future interventions targeted to one’s

illness trajectory to both promote and improve functional outcomes, recovery, and community

functioning in different settings. From a neuroscience and biological perspective, this work

may be able to identify biological and metabolic profiles, physical health parameters, and struc-

tural and functional properties of brain circuits that are associated with, and which may pre-

dict different illness and functional trajectories.

This study also has the potential to impact the administration of clinical care. Based on data

from this study, measurement-based approaches and future family and patient engagement

will provide templates for new co-design care models to further improve best practice.

Furthermore, this initiative will help address the huge gaps in physical care that drive mor-

bidity and premature mortality in this population. We anticipate that these efforts will open up

the potential for system level change to ensure individuals are treated from all health-related

(i.e. physical and mental) perspectives, also bridging medical and mental health care for indi-

viduals with SSDs.
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